
Effects of electron-electron scattering on impurity resistivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 8425

(http://iopscience.iop.org/0953-8984/3/43/009)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 23:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys.: Condens. Matter 3 (1591) 8 4 W 3 2 .  Printed in the UK 
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Abstract. All important theories of impurity resistivity each give one of two results. These 
two results coincide for zero temperature but differ for higher temperatures. The electron- 
electron scattering does not give a direct contribution to the resistivity. However, it has an 
indirecteffect. Itaffectstheoccupati~nnumbetsof theelectronstatesand thereby modifies 
the impurity scattering. The two results that we have discussed are both obtained in the 
absence of explicit electron-electron scattering. 

The solution of the Boltzmann equation in absence of electron-electron scattering gives 
one of the two results. In the limit of strong electron-electronscatteringthe second result is 
obtained; strong elearoreelectron interaction leads to full thermalisation in the centre-of- 
mass system of the carriers. Thus the two results are the extreme limits of the results from 
the Boltzmann equation for varying strength of the electron-electron scattering. In the 
present work we make a realistic estimate of the electron-electron scattering-rate and 
calculate the Boltzmann result fordoped GaAs. 

1. Introduction 

All important theories of impurity resistivity have one of the following two results: 

U = (ne2/m*)(a(k)) P = (m*/nez)l/(Z(k)) (1) 

U = (ne2/m")l/(l/a(k)) p = (m*/ne*)(I/a(k)). (2) 

and 

The time a(k) in these equations is the transport time. The angle bracket stands for the 
following averaging procedure: 

Hereafter we shall refer to (1) as result number one or the first result and to (2) as result 
number two or the second result. 

The hvo results are equal for zero temperature but differ for finite temperatures. 
The fmt result is obtained from the solution of the standard semi-classical Boltzmann 
equation, from the Kubo formula for the cunent-current correlation function or from 
the quantum Boltzmann equation (see chapter 7.1 of [l] for the derivation of the results 
from these three formulations). The second result is obtained from many different 
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formulations. It is obtained in the force-balance method [ 2 4 ;  as the lowest order 
contribution in the resistivity formulations [9-131; in the energy-loss method [14]; in 
the generalized Drude approach (GDA) [15]; as the simplest variational result in the 
variational solution to the Boltzmann equation [16]; from the Kubo formula for the 
force-force correlation function [17]. 

All these derivationshave been performed without any explicit inclusionof electron- 
electron (e-e) scattering. The e-e scattering has no direct effect on the resistivity. 
However it has an indirect effect. It affects the occupation numbers of the electron 
states and thereby modifies the impurity scattering. The e-e scattering strives towards 
thermalisation in the centre-of-mass (CM) system of the carriers. In the energy-loss 
method one of the basic assumptions is that the carriers are thermalised in CM. For 
this assumption to be valid one needs very strong e-e scattering. The solution to the 
Boltzmann equation in the limit of very strong electron-electron interaction [18, 191 
gives result number two. Both the resistivity formulations and the force-balance type 
theories have been shown to be incorrectly solved [20-23]. There are higher order 
diverging terms that if included and properly summed over will bring the result to the 
result number one. However, in the presence of inelastic scattering processes, like 
electron-phonon or e-e scattering, the divergences disappear [18] and the result lies 
somewhere in between the first and second results. 

Thus we can summarise the situation in the following way. If the e-e scattering is 
veryweak,result numberoneiscorrect;ifthee-escatteringisverystrong,result number 
twoiscorrect; ifthee-escattering-rate isofthesameorderofmagnitudeastheelectron- 
impurity scattering-rate the correct result lies somewhere in between results number 
one and two. 

The purpose of his work, which is a short sequel to [19], is to find out how important 
the e-e scattering is and which of the two results are closest to the correct result for a 
realistic situation. To do this we determine the strength of the e-e scattering and use the 
Boltzmann equation with e-e scattering included to calculate numerical results. The 
calculation is performed for n-type doped GaAs. In section 2 we make a brief derivation 
of the Boltzmann expression in the presence of finite e-e scattering. The derivation of 
thee-escattering-rate l/r,ispresentedinsection3. Byusinga trickwecanobtain this 
quantity from the GDA. The results, in the form of the reversal mobility, are presented 
in section 4. Finally, a summary is given in section 5. 

2. Boltmano equation with electron-electron scattering 

In this section we solve the Boltzmann equation for n-type doped GaAs in the presence 
of e-e scattering of general strength. This was already done in 1191 but we repeat the 
derivation here to keep the article self-contained. We assume that the donors, of density 
n ,  are randomly distributed and that the impurity potential can be approximated by a 
pure Coulomb potential. We use the values 13.0 and 0.06 m, for the dielectric constant 
K and effective mass m*, respectively. 

The Boltzmann equation says that for the steady state condition the occupation 
number for a state k is unchanged with time, i.e. 
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The first term which comes from impurity scattering is given by 

(5 )  
[ f (k )  - f (k + q)14q2 + 2kq CNk,  d1 

44"2(43 0) 

We define the transport time r ( k )  through the relation 

f(k) = f o [ k +  es(k)E/f i ]  (6) 
where f "  is the Fermi-Dirac distribution function. Putting this expression into (9, 
linearizing the result and keeping the lowest order contributions leads to 

8e4m*n eE cos(k, k + q)]S[q2 + 2kq cos(k, q ) ]  - - ~- a ( k )  -31 d3q 
- 

- 
h3K2 fi a E k  ak q 4 4 4 >  0) 

where part of the expression has been identified as the inverse transport time from 
impurity scattering l/rep(k) given by 

8e4m*n 11 - COS(*, k + q)]S[q2 + 2kq cos(k, q)]  
l/thp(k) = -/d3q 

f i 3 K 2  q4E2(9.0) 

This is the transport time when impurity scattering is the only scattering process. The e- 
e scattering strives towards thermal equilibrium in the CM system. We use a relaxation 
time approximation for the e-e scattering and find 

f ( k )  - fo(k + eE(W)/fi) 
Z, 

r (k )  - ( s ( k ) )  eE afo(k) a E k  

Z, fi a&, ak 
- -  - (9) 

where the numerator on the right-hand-side of the first line is the difference between 
the distribution function and the Fermi-Dirac distribution function in the CM system. 
We have here assumed a constant value for ree. This is not necessary but makes things 
easier. Here, we just want to estimate the importance of the e e  scattering and with this 
purpose it is sufficient to use an approximate relaxation time. 

The last term of the Boltzmann equation is given by 

eEaf(k) eEafo(k)  a E k  

Now, (4) can be written as 
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After reduction and rearrangement we get 
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~ ( k )  = ~imp(k)r- / ( (~ce + rimp(k)) + (r(k))rimp(k)/(rM + r imp(k) )  (12) 
and averaging both sides as prescribed in (3) results in 

Here wesee that for vanishinge-e scattering (r(k))  = ( rhP(k) ) ,  i.e., result number one 
is obtained. On the other hand very strong e-e scattering gives ( r ( k ) )  = l/(l/rimp(k)) 
and result number two is regained. 

3. Relaxation time for electrowlectron scattering 

In this section we use a trick to lure the GDA formalism to give us the value of the e- 
e relaxation time. As we have mentioned before the e-e scattering gives no direct 
contribution to the resistivity in a single-component plasma. The reason for this is not 
the absence of e-e scattering. The reason is that both momentum and current are 
preserved in each e-e scattering event. In a two-component plasma only momentum is 
conserved, and the scattering contributes directly to the resistivity. The contribution 
comes in the form of the scattering rate times a prefactor. This prefactor vanishes in the 
single-component plasma but not for the two-component plasma if the charge-over- 
mass ratios are different for the two components. This meansthat the scattering rate can 
beextractedfrom the theoryeven for asingle-component plasma, if propercare istaken. 

To reach our goal we add to our electron system a ‘shadow system’ with the same 
number of camers as electrons but with a different mass; we calculate the scattering rate 
between the components in this combined system, let the masses become equal and in 
the end we eliminate the ‘shadow system’. We use the GDA [U] to obtain the scattering 
rates. This approach consists of three steps. In the first step the high frequency limit of 
the dynamical conductivity is derived within the Kubo formalism and diagrammatic 
perturbation theory. In the second step, this result is compared to the high-frequency 
expansion of the generalised Drude expression for the dynamical conductivity and 
the various relaxation times are hereby identified (the generalisation of the Drude 
expression consists of allowing the relaxation times to be frequency dependent and 
complex valued). In the third, and last, step the obtained expression for the relaxation 
times are assumed to be valid for all frequencies and in particular for zero frequency. 

Let the indices 1 and 2 represent the real carriers and those of the ‘shadow system’, 
respectively. The averaging velocities of the carriers are denoted by U. Since at the end 
we will let the masses become equal we can from the start let the coefficients of friction 
between the carriers and the impurities be the same, q ,  for the two groups of carriers. 
The coefficient of mutual friction we denote by q 12. With these definitions the equations 
of motion in an applied electric field E become 

m l v l ( - i w ) = e E - n v l q - n ( v l  - v2)q12 

m2v2(-iw) = eE - nv2q + n(vl - v 2 ) q l ~ .  
(14) 

The coefficient of mutual friction is related to the relaxation time for scattering between 
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the carriers. This relation is obtained from realising that as the electric field and the 
impurityscatteringare turnedoff the relativevelocity between the twogroups ofcarriers 
decays with the decay constant l/sl2. For vanishing E and q (14) reduces, after the 
inverse Fourier transform has been taken, into 

dvl ldt= -q&lml)(vl - v d  dyz/dt= I ~ I Z ( ~ / ~ Z ) ( V ~  - vz). (15) 
Subtraction of the two equations leads to the following time dependence of the relative 
velocity 

T i 2  = t112n(l/mI + Vmd. (17) 
Solving (14) and noting that the conductivity, IS, can be expressed as 

U = (ne/E)(v,  + v2) (18) 
we arrive at the following expression for the dynamical conductivity 

IS = -ne2 

The high-frequency expansion of this expression is 

U 0-” = (nez/wz.)[nq(l/m: + 1/m$)] + (ne2/w2)[nq12(l/ml - 1/m2)’] (20) 

where the first term is the contribution from impurity scattering and the second is the 
contribution from e-e scattering. We see that the expression behaves correctly in that 
the last contribution vanishes for equal masses. 

The contribution from +e scattering is compared to the result for a two-component 
plasma derived within the Kubo formalism in [24] (equation (2.30) of that reference). 
This expression also contains the same prefactor as the second term of (20). The 
coefficient of mutual friction is identified and the static limit is taken. The result is 

where CY and  CY^ are the polarisabilities for the two carrier systems and E is the dielectric 
function 

E ( 4 ,  w )  = 1 + au,(q, U) + %(4,  U). (22) 

The quantity qp is the projection of the momentum on the electric field. 

polarisabilities in the dielectric function. Thus, the coefficient of friction is 
Now we can safely let ml = m2 = m” and in doing so we should only keep one of the 
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and the e-e scattering rate is finally obtained as 

The polarisabilities are the full temperature dependent polarisabilities in the random 
phase approximation (RPA). 

This completes the derivation of the relaxation time for e-e scattering. In the next 
section we present the numerical results. 

4. Numerical results 

In this section we present our numerical results for doped GaAs. These results are the 
solution of the Boltzmann equation for the impurity scattering in the presence of 
electron-electron scattering. To tie up with our previous article [19] we present the 
results in the form of the reversal mobility: 

1Jp = nep = ne/o  = m*/e(r(k)} .  (25) 

The expression for ( r ( k ) }  was given in (13). As we already stated in section 2 we assume 
that the donors, of density n ,  are randomly distributed and that the impurity potential 
can be approximated by a pure Coulomb potential. We use the values 13.0 and 0.06 me 
for the dielectric constant K and effective mass m*, respectively. In figure 1 we give the 
result for n = 1 x 10’*cn1-~ as a function of T/TF. The lower chained curve is result 
number one and the upper chained curve is result number two. The solid curve is our 
full result from the Boltzmann equation with e-e scattering included. As can be seen 
this curve is close to result number one for lower temperatures. Then it separates from 
result number one and for higher temperatures stays roughly at equal distance from 
results number one and two (note the logarithmic scale). To investigate if there is a 
systematic density variation in the relative importance of the e-e scattering we made a 
calculation in which T/T, was kept constant at the value 10 and the density varied over 
a region covering a variation of three orders of magnitude. We found that the behaviour 
was very much the same over the whole density range. These results are presented in 
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Figure 2. The reciprocal mobility as function of 
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n “3) including e-e scattering. 

figure 2. Here, again the lower curve is result number one and the uppermost curve 
result number two. The full result is given by the solid curve which lies more or less in 
the middle. We should remember that the dashed curves are the two extreme results 
with no and very strong e-e scattering, respectively. All results were obtained with full 
temperature-dependent RPA screening. 

5. Summary and conclusions 

We have studied the indirect effects that e-e scattering has on the impurity resistivity. 
Numerical results have been presented for doped GaAs. AU important theories of 
impurity resistivity give, in the absence of e-e scattering, one of two results. It turns out 
that these two results are the extreme limits of the results from a more elaborate 
calculation includinge-e scattering. In thelimit ofvery stronge-e scattering the electrons 
are thermalised in their centre-of-mass system; in this system the distribution function 
for the electrons is a Fermi-Dirac distribution function. In the other extreme limit, i.e. 
in the limit of no e-e scattering at all, the distribution function is different. The impurity 
scattering depends on the form of the distribution function, which means that the e-e 
scattering has an indirect effect on the resistivity. In formulations where a basic assump- 
tion is that the electrons are thermalised in their centre-of-mass system the result is the 
extreme limit with very strong e-e scattering even though no explicit e-e scattering is 
included in the formalism. 

We used the Boltzmann equation including impurity and e-e scattering to calculate 
the reversal mobility. The impurity part was included in a strict fashion while the e-e 
scattering part was treated in a relaxation time approximation. The e-e scattering-rate 
was obtained from the generalised Drude approach. We found that the inclusion of the 
actual e+ scattering in doped GaAs led to a result roughly in the middle of the two 
extreme results. Thus, the e-e scattering was neither negligible nor strong enough to 
thermalise the electrons in the centre-of-mass system. This behaviour was independent 
of the doping level. 
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